Sunday, November 29, 2009

Industrial Engineering - Definitions

Industrial engineering directs the efficient conduct of manufacturing, construction, transportation, or even commercial enterprises of any undertaking, indeed in which human labor is directed to accomplishing any kind of work . Industrial engineering has drawn upon mechanical engineering, upon economics, sociology, psychology, philosophy, accountancy, to fuse from these older sciences a distinct body of science of its own . It is the inclusion of the economic and the human elements especially that differentiates industrial engineering from the older established branches of the profession (Going, 1911) [1].



“Industrial engineering is the engineering approach applied to all factors, including the human factor, involved in the production and distribution of products or services.” (Maynard, 1953) [2]


“Industrial engineering is the design of situations for the useful coordination of men, materials and machines in order to achieve desired results in an optimum manner. The unique characteristics of Industrial Engineering center about the consideration of the human factor as it is related to the technical aspects of a situation, and the integration of all factors that influence the overall situation.” (Lehrer, 1954) [3]

“Industrial engineering is concerned with the design, improvement, and installation of integrated systems of men, materials, and equipment. It draws upon specialized knowledge and skill in the mathematical, physical, and social sciences together with the principles and methods of engineering analysis and design, to specify, predict, and evaluate the results to be obtained from such systems.” (AIIE, 1955). [4]


"Industrial engineering may be defined as the art of utilizing scientific principles, psychological data, and physiological information for designing, improving, and integrating industrial, management, and human operating procedures." (Nadler, 1955) [5]


“Industrial engineering is that branch of engineering knowledge and practice which

1. Analyzes, measures, and improves the method of performing the tasks assigned to individuals,

2. Designs and installs better systems of integrating tasks assigned to a group,

3. Specifies, predicts, and evaluates the results obtained.

It does so by applying to materials, equipment and work specialized knowledge and skill in the mathematical and physical sciences and the principles and methods of engineering analysis and design. Since, however, work has to be carried out by people; engineering knowledge needs to be supplemented by knowledge derived from the biological and social sciences.” (Lyndall Urwick, 1963) [6]



Industrial engineering is concerned with the design, improvement and installation of integrated systems of people, materials, information, equipment and energy. It draws upon specialized knowledge and skill in the mathematical, physical, and social sciences together with the principles and methods of engineering analysis and design, to specify, predict, and evaluate the results to be obtained from such systems. [7]



“Industrial Engineering is Human Effort Engineering. It is an engineering discipline that deals with the design of human effort in all occupations: agricultural, manufacturing and service. The objectives of Industrial Engineering are optimization of productivity of work-systems and occupational comfort, health, safety and income of persons involved.” (Narayana Rao, 2006) [8]


Definition proposed in this knol.

"Industrial Engineering is Human Effort Engineering and System Efficiency Engineeering. It is an engineering discipline that deals with the design of human effort and system efficiency in all occupations: agricultural, manufacturing and service. The objectives of Industrial Engineering are optimization of productivity of work-systems and occupational comfort, health, safety and income of persons involved."

For references visit
Industrial Engineering
Definition, Explanation, History, and Programs
http://knol.google.com/k/narayana-rao-k-v-s-s/industrial-engineering/2utb2lsm2k7a/1151

Saturday, November 28, 2009

Environmental Value Engineering - A Cost Reduction Technique

Accodring to Roundebush, environmental value engineering evaluates the environmental contribution and impact of built environment alternatives in units of solar EMERGY during the alternative's life cycle.

EMERGY is defined by Roundebush as all the available energy that was used in the work of making a product, including environmental impacts relating to inputs of: environment, fuel energy, goods, and services (labor). EMERGY is expressed in standard units of energy called solar emjoules (SEJ).

The methodology incorporates 10 life cycle phases of man-made products.

A. natural resource formation,
B. natural resource exploration and extraction,
C. material production,
D. design,
E. component production,
F. fabrication/construction,
G. use,
H. demolition,
I. natural resource recycling, and
J. disposal.


http://knol.google.com/k/narayana-rao-k-v-s-s/environmental-value-engineering/2utb2lsm2k7a/1974#